On the line-search gradient methods for stochastic optimization
نویسندگان
چکیده
منابع مشابه
Hybrid Probabilistic Search Methods for Simulation Optimization
Discrete-event simulation based optimization is the process of finding the optimum design of a stochastic system when the performance measure(s) could only be estimated via simulation. Randomness in simulation outputs often challenges the correct selection of the optimum. We propose an algorithm that merges Ranking and Selection procedures with a large class of random search methods for continu...
متن کاملStochastic gradient methods for the optimization of water supply systems
Reductions of water deficits for users and energy savings are frequently conflicting issues when optimizing largescale multi-reservoir and multi-user water supply systems. Undoubtedly, a high level of uncertainty due to hydrologic input variability and water demand behaviour characterizes these problems. The aim of this paper is to provide a decision support for the water system authority, in o...
متن کاملA memory gradient method without line search for unconstrained optimization
Memory gradient methods are used for unconstrained optimization, especially large scale problems. The first idea of memory gradient methods was proposed by Miele and Cantrell (1969) and subsequently extended by Cragg and Levy (1969). Recently Narushima and Yabe (2006) proposed a new memory gradient method which generates a descent search direction for the objective function at every iteration a...
متن کاملAccelerated Gradient Methods for Stochastic Optimization and Online Learning
Regularized risk minimization often involves non-smooth optimization, either because of the loss function (e.g., hinge loss) or the regularizer (e.g., l1-regularizer). Gradient methods, though highly scalable and easy to implement, are known to converge slowly. In this paper, we develop a novel accelerated gradient method for stochastic optimization while still preserving their computational si...
متن کاملConditional gradient type methods for composite nonlinear and stochastic optimization
In this paper, we present a conditional gradient type (CGT) method for solving a class of composite optimization problems where the objective function consists of a (weakly) smooth term and a strongly convex term. While including this strongly convex term in the subproblems of the classical conditional gradient (CG) method improves its convergence rate for solving strongly convex problems, it d...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: IFAC-PapersOnLine
سال: 2020
ISSN: 2405-8963
DOI: 10.1016/j.ifacol.2020.12.2284